Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1210939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356645

RESUMO

Introduction: Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods: For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion: On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.

2.
Neuroimage ; 260: 119475, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840117

RESUMO

Imaging-based quantitative measures from diffusion-weighted MRI (dMRI) offer the ability to non-invasively extract microscopic information from human brain tissues. Group-level comparisons of such measures represent an important approach to investigate abnormal brain conditions. These types of analyses are especially useful when the regions of abnormality spatially coincide across subjects. When this is not true, approaches for individualized analyses are necessary. Here we present a framework for single-subject multidimensional analysis based on the Mahalanobis distance. This is conducted along specific white matter pathways represented by tractography-derived streamline bundles. A definition for abnormality was constructed from Wilk's criterion, which accounts for normative sample size, number of features used in the Mahalanobis distance, and multiple comparisons. One example of a condition exhibiting high heterogeneity across subjects is traumatic brain injury (TBI). Using the Mahalanobis distance computed from the three eigenvalues of the diffusion tensor along the cingulum, uncinate, and parcellated corpus callosum tractograms, 8 severe TBI patients were individually compared to a normative sample of 49 healthy controls. For all TBI patients, the analyses showed statistically significant deviations from the normative data at one or multiple locations along the analyzed bundles. The detected anomalies were widespread across the analyzed tracts, consistent with the expected heterogeneity that is hallmark of TBI. Each of the controls subjects was also compared to the remaining 48 subjects in the control group in a leave-one-out fashion. Only two segments were identified as abnormal out of the entire analysis in the control group, thus the method also demonstrated good specificity.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Substância Branca/diagnóstico por imagem
3.
Front Aging Neurosci ; 13: 750621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880746

RESUMO

Throughout adulthood, the brain undergoes an array of structural and functional changes during the typical aging process. These changes involve decreased brain volume, reduced synaptic density, and alterations in white matter (WM). Although there have been some previous neuroimaging studies that have measured the ability of adult language production and its correlations to brain function, structural gray matter volume, and functional differences between young and old adults, the structural role of WM in adult language production in individuals across the life span remains to be thoroughly elucidated. This study selected 38 young adults and 35 old adults for diffusion tensor imaging (DTI) and performed the Controlled Oral Word Association Test to assess verbal fluency (VF). Tract-Based Spatial Statistics were employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and local diffusion homogeneity (LDH) in 12 WM regions of interest associated with language production. To investigate group differences on each DTI metric, an analysis of covariance (ANCOVA) controlling for sex and education level was performed, and the statistical threshold was considered at p < 0.00083 (0.05/60 labels) after Bonferroni correction for multiple comparisons. Significant differences in DTI metrics identified in the ANCOVA were used to perform correlation analyses with VF scores. Compared to the old adults, the young adults had significantly (1) increased FA values on the bilateral anterior corona radiata (ACR); (2) decreased MD values on the right ACR, but increased MD on the left uncinate fasciculus (UF); and (3) decreased RD on the bilateral ACR. There were no significant differences between the groups for AD or LDH. Moreover, the old adults had only a significant correlation between the VF score and the MD on the left UF. There were no significant correlations between VF score and DTI metrics in the young adults. This study adds to the growing body of research that WM areas involved in language production are sensitive to aging.

4.
J Neurotrauma ; 38(13): 1799-1808, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487126

RESUMO

Adolescent traumatic brain injury (TBI) is a major public health concern, resulting in >35,000 hospitalizations in the United States each year. Although neuroimaging is a primary diagnostic tool in the clinical assessment of TBI, our understanding of how specific neuroimaging findings relate to outcome remains limited. Our study aims to identify imaging biomarkers of long-term neurocognitive outcome after severe adolescent TBI. Twenty-four adolescents with severe TBI (Glasgow Coma Scale ≤8) enrolled in the ADAPT (Approaches and Decisions after Pediatric TBI) study were recruited for magnetic resonance imaging (MRI) scanning 1-2 years post-injury at 13 participating sites. Subjects underwent outcome assessments ∼1-year post-injury, including the Wechsler Abbreviated Scale of Intelligence (IQ) and the Pediatric Glasgow Outcome Scale-Extended (GOSE-Peds). A typically developing control cohort of 38 age-matched adolescents also underwent scanning and neurocognitive assessment. Brain-image segmentation was performed on T1-weighted images using Freesurfer. Brain and ventricular cerebrospinal fluid volumes were used to compute a ventricle-to-brain ratio (VBR) for each subject, and the corpus callosum cross-sectional area was determined in the midline for each subject. The TBI group demonstrated higher VBR and lower corpus callosum area compared to the control cohort. After adjusting for age and sex, VBR was significantly related with GOSE-Peds score in the TBI group (n = 24, p = 0.01, cumulative odds ratio = 2.18). After adjusting for age, sex, intracranial volume, and brain volume, corpus callosum cross-sectional area correlated significantly with IQ score in the TBI group (partial cor = 0.68, n = 18, p = 0.007) and with PSI (partial cor = 0.33, p = 0.02). No association was found between VBR and IQ or between corpus callosum and GOSE-Peds. After severe adolescent TBI, quantitative MRI measures of VBR and corpus callosum cross-sectional area are associated with global functional outcome and neurocognitive outcomes, respectively.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Gravidade do Paciente , Recuperação de Função Fisiológica/fisiologia , Adolescente , Lesões Encefálicas Traumáticas/fisiopatologia , Ventrículos Cerebrais/fisiopatologia , Criança , Corpo Caloso/fisiopatologia , Feminino , Humanos , Masculino , Tamanho do Órgão/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...